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Dynamic Operator Overload: A Model for Predicting
Workload During Supervisory Control

Leonard A. Breslow, Daniel Gartenberg, J. Malcolm McCurry, and J. Gregory Trafton

Abstract—Crandall et al. and Cummings & Mitchell introduced
fan-out as a measure of the maximum number of robots a single
human operator can supervise in a given single-human-multiple-
robot system. Fan-out is based on the time constraints imposed by
limitations of the robots and of the supervisor, e.g., limitations in
attention. Adapting their work, we introduced a dynamic model
of operator overload that predicts failures in supervisory control
in real time, based on fluctuations in time constraints and in the
supervisor’s allocation of attention, as assessed by eye fixations.
Operator overload was assessed by damage incurred by unmanned
aerial vehicles when they traversed hazard areas. The model gen-
eralized well to variants of the baseline task. We then incorporated
the model into the system where it predicted in real time, when an
operator would fail to prevent vehicle damage and alerted the oper-
ator to the threat at those times. These model-based adaptive cues
reduced the damage rate by one-half relative to a control condition
with no cues.

Index Terms—Cognition, human-robot interaction, multi-robot
systems, predictive models, unmanned aerial vehicles.

I. INTRODUCTION

A S ROBOTS become cheaper and more autonomous, there
is an opportunity to enable one human supervisor to con-

trol multiple robots simultaneously. Yet increasing the number
of robots that are controlled can hinder operator performance
in time-critical supervisory control tasks by increasing opera-
tor workload, thereby impacting the operator’s attentional re-
sources. Understanding the factors that determine the effective-
ness of the overall human–robot system, including factors that
affect the cognitive state of the operator, can contribute to the
development of adaptive automation that can improve operator
performance.

One measure of the number of robots a single operator can
supervise at one time is Crandall et al.’s fan-out (FO) equation
[1]. FO predicts the maximum number of robots that can be
monitored by taking into account the amount of time a robot can
be neglected before it needs attention [“neglect time” (NT)] in
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comparison with the amount of time required for an operator to
interact with a robot needing attention until it no longer requires
attention [“interaction time” (IT)] [1]. The more autonomous
the robot, the longer its NT and consequently, the higher the
FO, i.e., the number of robots a single operator can control.
Similarly, the less IT, higher the FO.

Cummings and Mitchell [2] extended the concept of FO by
adding a stronger emphasis on the perceptual and cognitive
processes of the operator. Specifically, they included in their
FO computation wait time (WT) variables, including delays in
allocating attention to a vehicle requiring help (WTAA) and
delays due to task queuing (WTQ), i.e., allocating time among
several vehicles that require attention simultaneously. These
WTs constitute time demands in addition to IT that impact FO.

FO is a useful global assessment of a particular task, reflecting
the demands the task places upon the operator, thereby facilitat-
ing the cognitive engineering design and improving training. We
shall explore whether the dynamic variability of performance
during the course of a particular task can be predicted by the
same, or similar, factors that predict FO for a human–robot sys-
tem as a whole. Presumably, even where the operator is supervis-
ing no more robots than prescribed by the FO equation, there will
be moments when events converge to make him/her vulnerable
to temporary overloading and, therefore, to error. We shall refer
to transitory overload of this sort as dynamic operator overload.

We hypothesize that the FO model can be adapted for predict-
ing dynamic operator overload and therefore, provide a basis
for preventing operator errors of commission or omission. In
Section II, we explain the motivation for our model in terms
of predicting operator overload. Our predictive model was
created and evaluated over five experiments, described in
Section III. The experiments relied on a simulated supervisory
control platform in which an operator supervised five homoge-
neous UAVs. Data from Experiment 1 served to generate the
model. Experiment 2 replicated and validated the model by as-
sessing its application to an experimental condition identical to
that of Experiment 1. Experiments 3 and 4 assessed the gener-
alizability of the model to different task conditions that were,
respectively, relatively easier or more difficult than Experiment
1. Experiment 5 assessed whether the model could predict op-
erator overload in real time by generating cues to warn partic-
ipants of threats. Specifically, we incorporated the model into
the supervisory control simulation to provide real-time cues of
upcoming threats when the model predicted damage and com-
pared performance on this system with performance on a system
with no cues. Then, in Section IV, we compare dynamic opera-
tor overload with fan-out empirically. Finally, in Section V, we
conclude our discussion.
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II. FROM FAN-OUT TO DYNAMIC OPERATOR OVERLOAD

A. Limits of Supervisory Control: Fan-Out

Crandall et al. [1] proposed that the maximum number of
robots that could be controlled by a single human operator, or
FO, could be computed as

FO = NT/IT + 1 (1)

where NT is the amount of time a robot can be ignored by the op-
erator before its performance drops below some predetermined
level, and IT is the amount of time required for the operator to
interact with the robot in order to restore the robot’s performance
to the predetermined acceptable level. This equation defines FO
as the maximum number of vehicles an operator can interact
with (IT) while another vehicle is running autonomously (NT).
“+1” in the equation accounts for the latter, neglected vehicle.

Whereas Crandall et al.’s FO model focused on task variables,
Cummings and Mitchell [2] extended the model to include the
human factors variables, specifically those relating to the over-
head of delays, or WTs, WTAA and WTQ, in addition to the
duration of direct interaction (IT) with a vehicle requiring at-
tention. These WTs are combined with IT in the denominator
of the ratio

FO = (NT/(IT + WTAA + WTQ)) + 1 (2)

While FO is a global measure of operator capacity on a task,
the amount of operator overload within arbitrary time intervals
during the course of a task can be expected to fluctuate as the
FO variables drift from their respective mean values. Such fluc-
tuations alter the probability of overload-induced errors over the
course of a supervisory control session. Our goal is to instantiate
these FO variables, or similar variables, in a model designed to
predict when operator load increases enough to cause operators
to become overloaded and as a consequence make errors.

In subsequent work, Crandall et al. implemented stochastic
models of operator–vehicle interactions based on traces of in-
teraction sessions [3], [4]. These models predict the operator’s
selection of a vehicle to handle and predict vehicle state, based
on observed sequences of vehicle states and selections. While
this approach was successful in predicting operator performance
across task variations, it did not analyze cognitive factors or
within-task performance variation, the main foci of the work to
be reported here.

While we were concerned with operator load as an impedi-
ment to performance, there may be occasions where too little
operator load can impede performance, as a result of boredom
for instance. We do not believe the task we employed was prone
to this problem, since it was very demanding, requiring rather
continuous attention of the operator.

B. Predicting Operator Overload in a Supervisory Control
Task

In this paper, we attempted to predict when an operator super-
vising multiple UAVs will become overloaded. The simulated
control system we used automatically assigned each UAV to a
target and determined its initial trajectory toward that target. In

addition, there were threats, or hazard areas, that would cause a
UAV to be damaged if not avoided. Participants could add way-
points to the trajectory or reassign a UAV to a different target in
an effort to prevent damage to a vehicle. Once a UAV arrived
at its target, the operator directed it in delivering its payload on
the target.

The episodes of interest were path-intersect threat (PIT)
events, which start from the moment a vehicle enters on a col-
lision course with a threat and end either at the point in time
when the vehicle traverses the threat area, incurring damage, or
else at the point in time when the vehicle changes course away
from the threat due to the operator’s evasive actions. It is clear,
when a UAV will traverse a threat area, as a vehicle’s trajectory
to its target is displayed by a line, which intersects the threat in
these cases. However, participants are not specifically alerted to
the threat. We assumed that an operator was overloaded when
he/she allowed a UAV to incur damage by traversing a threat.
We attempted to predict when an operator will fail to prevent a
vehicle from taking damage by incorporating variables similar
to those in the FO equation within a model designed to predict
dynamic operator overload.

As a matter of terminology, we will define the focal vehicle of
a PIT event to be the vehicle that is on a threat trajectory during
that event. Likewise, the threat and target toward which the focal
vehicle is heading will be referred to as the focal threat and focal
target, respectively, of the PIT event. The focal vehicle, target,
and threat will be referred to collectively as the focal objects.
Vehicles, targets, and hazards other than the focal objects will be
referred to as nonfocal objects, vehicles, etc. Multiple PIT events
may overlap in time, producing one of the main challenges of
multiple-vehicle supervision. WTQ represents the amount of
time devoted to subtasks related to nonfocal vehicles.

Our interest in predicting damage on a per-event basis mo-
tivated a minor change in the FO equation, such that the FO
variable NT was replaced by the variable available time (AT).
AT is the time interval from the start of the PIT event to the
expected time of impact with the threat. AT can be determined
at the start of a PIT event, based on a vehicle’s initial distance
from the target, since vehicles in our task moved at a constant
speed. During the AT interval, the operator needs to take care of
the focal vehicle that is on the threat trajectory, as well as other
vehicles requiring attention during that interval, if possible. The
number of vehicles that an operator can handle during the AT
interval, including the focal vehicle, is the FO. Thus, for the
purposes of this paper, we modified FO equation (2) to

FO = AT/(IT + WTAA + WTQ) (3)

where NT is replaced by AT. In addition, the result is not incre-
mented by 1 as it was in (2) because that increment represented a
vehicle that can be neglected and there is no vehicle that can nec-
essarily be neglected during a PIT event. Although PIT events
often overlapped in time with one another or with payload de-
livery actions, a detailed analysis revealed that it was rare for
a PIT to afford insufficient AT time for vehicle damage to be
prevented.

Dynamic operator overload was assessed within each PIT
event as the occurrence of damage to the focal vehicle. The
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variables included in our model predicting damage in a PIT
event were operationalized as follows:

1) Wait Time Attention Allocation (WTAA): the amount of
time it took to recognize that the focal UAV required attention.
This duration was operationalized as the duration from the start
of a PIT event until the relevant threat was first looked at.

2) Task Queuing: represents the allocation of attention to
nonfocal objects. Two alternative variables were considered:

a) Wait Time Queue (WTQ): As in the FO model, WTQ rep-
resents the amount of time spent on manual actions on
nonfocal objects.

b) Wait Queue Fixations (WQF): the number of eye fixations
on nonfocal objects.

3) Available Time (AT): the interval from when a vehicle
enters on a collision course with a threat (i.e., the start of a PIT
event) until it will make contact with the threat if successful
evasive action is not taken. This interval is the amount of time
available to the operator to recognize and remedy the threat.

Note that the FO variable IT is not included in our dynamic
model of operator overload. In the present context, IT is the time
spent on actions resulting in the successful avoidance of damage
during a PIT event. Since we are trying to predict the prevention
of damage on a per-event basis, activities during IT are clearly
partially confounded with what we are trying to predict. Thus,
IT does not contribute to our understanding of the processes
involved in the occurrence or prevention of damage.

The predictor WQF replaced WTQ, in our model, in part,
because it was based on eye fixations, rather than manual actions.
Similarly, the predictor WTAA is measured by eye fixations. Eye
fixations are a more comprehensive measure of cognitive focus
than manual actions, since eye fixations accompany cognitive
processes, such as attention allocation, situation assessment, and
planning, which can occur with or without concurrent manual
actions. In addition, as we shall see, the predictive model based
on the eye fixation variable, WQF, was superior to the model
based on manual actions, WTQ.

An eye-tracker was used in this paper to record operator’s fix-
ations on a computer screen. Eye-trackers are able to measure
where an operator is looking (called a fixation) and how long
they look at something (called the fixation duration) [5], [6].
Several eye movement measures have been shown to be indica-
tors of cognitive processing [5]–[7]. We used eye fixations as
a measure of operator attention allocation. While it is possible
to look at a stimulus without attending to it [8], eye movements
have been found to correlate with attentional shifts [9]–[11]. As
a covert shift of attention seemingly precedes an eye movement
to the target of a saccade, eye movements can serve as a di-
rect measure of attention [10]. In addition, the examination of
eye movements has been used to predict procedural errors in a
manner similar to this paper [12], [13].

Our predictive model of damage in PIT events was computed
using logistic regression analysis. Logistic regression computes
a multiple linear regression model with a dichotomous outcome
variable; a more detailed description can be found in [14]. The
dichotomous outcome variable in our analysis of PIT events was
the occurrence/avoidance of damage to the focal vehicle. Un-
like other classifiers, logistic regression allows one to determine

whether or not each of the predictor variables had a statistically
significant impact on the overall success of the model, in ad-
dition to assessing the model as a whole. Additionally, logistic
regression has been used in predictive models of procedural
errors in previous research [12], [13].

III. EMPIRICAL EVIDENCE

To examine the cognitive processes underlying operator at-
tention and time allocation in a supervisory control task, data
were collected from a complex dynamic supervisory control
simulation. In the simulation, the participant controlled five
semiautonomous, homogenous UAVs. The high-level goal of
the simulation was to direct UAVs to specific targets on a map
and visually identify key items at the target site in order to de-
liver the payload on those items. As participants performed the
simulation, eye movement and mouse data were recorded.

A critical component to successfully completing the simu-
lation was to prevent UAVs from passing over threat areas,
which periodically changed position on the map in an unpre-
dictable manner. If a UAV “hit” (i.e., traversed) a threat area, the
UAV took damage and could become incapacitated. Each time
a UAV’s path intersected a threat area, the operator had to take
an explicit action to divert the UAV and prevent damage. Our
goal was to develop a model to predict when a vehicle would
take damage.

The five experiments that were conducted are outlined in
Table I. The data in Experiment 1 were used to generate the
predictive model. Experiments 2, 3, and 4 provided validation of
the model by testing its generalization to the same procedure as
Experiment 1 in Experiment 2, to an easier variant of Experiment
1 (Experiment 3), and to a more difficult variant (Experiment
4). Finally, Experiment 5 tested the application of the model to
prevent damage to UAVs by providing users with model-based
cues.

A. Method

1) Participants: Participants were George Mason University
undergraduate students, who participated for extra credit in a
psychology course. All participants had normal or corrected-to-
normal vision. Participants were asked to rate how often they
played video games on a scale of one (never), two (sometimes),
or three (a lot). Participant characteristics are summarized in
the last three columns of Table I. As can be seen, participants
were sometimes “rejected,” i.e., their data were excluded from
analysis. Rejection of a participant was most often due to the
failure to calibrate a participant on the eye tracker or poor eye
tracking validity. Less often, participants’ data were excluded
due to technical difficulties or experimenter errors.

2) Simulation Description: The supervisory control task,
originally designed as the Research Environment for Supervi-
sory Control of Heterogeneous Unmanned Vehicles (RESCHU)
[15], [16], was used. RESCHU is a discrete event simulator and
it was modified to only include homogenous UAVs moving at a
constant speed of 5.2 pixels/s. The interface of the supervisory
control simulation, shown in Fig. 1, has three main sections: the
map panel, the status panel, and the payload panel. The map
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TABLE I
EXPERIMENTAL METHODS, PARTICIPANTS

Fig. 1. RESCHU supervisory control simulation, consisting of three panels: A. Payload Panel. B. Map Panel. C. Status Panel.

panel (see Fig. 1, panel B) displays UAVs (blue half ovals), tar-
gets (red diamonds) toward which UAVs are moving, and threats
(yellow circles) which should be avoided by UAVs. The status
panel (see Fig. 1, panel C) shows the status of the UAVs and
includes information on vehicle damage, time until the vehicle
reaches a waypoint or target, and time remaining in the simula-
tion. The payload panel (see Fig. 1, panel A) is used to acquire
a payload target through a visual acquisition task (described be-
low) which is performed after a UAV reaches a target and the
target is engaged by the operator.

The operator’s high-level goal in the experiments was to mon-
itor UAVs as they proceeded to specific target areas in the map
panel, to engage the targets, and to perform a payload visual
acquisition task once the UAV had engaged the target. The pay-
load visual acquisition task required the participant to search for

the target in the randomly selected photographic image within
the payload panel and to mouse-click the target, thereby caus-
ing the payload to be delivered. During the visual acquisition
payload task, the operator could not interact with the map panel
of the interface, even though the vehicles continued to progress
toward their targets on the map panel and new PIT events could
begin during this interval.

Throughout the session, five UAVs moved along straight line
trajectories toward their respective automatically assigned tar-
get. There were also 18 threat areas. Every 4 s, one of the 18
threats was randomly selected to change its position to a ran-
domly determined location, with the constraint that the threats
could not appear closer than 3◦ of the visual angle (about 50
pixels) from any UAV. This constraint was imposed to facilitate
the eye-tracking system. If the UAV passed through a threat
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area, it incurred damage. Damage was indicated as a bar in the
status panel. The appearance of targets and threats on the simu-
lation map was randomized with the constraint that targets and
threats could be no closer than 3◦ of the visual angle from each
other.

If a UAV incurred enough damage, it eventually became in-
capacitated (“dead”). An incapacitated UAV was colored black
and remained immobile on the screen, unavailable for further
use. To avoid a threat area, the operator could perform two pos-
sible types of action. First, the operator could direct the UAV to a
different target. Second, the operator could add, delete, or move
waypoints on the UAV’s trajectory to route the UAV around the
threat, without changing the final destination target.

There were always seven targets present on the map. At the
start of the simulation, the UAVs were randomly assigned to
different targets; thus, the UAVs might not be directed toward
the closest unassigned target. After a target was engaged and
the visual acquisition payload task was complete, the UAV was
randomly assigned to a new currently unassigned target which
again might not be close to it. The simulation was a complex
task with multiple events happening in parallel. More than one
UAV could be waiting at their respective targets for engagement
at the same time and more than one UAV could be on a path
intersecting a threat area at a time.

When performing the simulation, participants were scored on
their performance, both the number of targets that were engaged
correctly and the amount of damage incurred by vehicles. How-
ever, no overall score was presented. Participants were instructed
to engage as many targets as possible and to prevent damage to
vehicles as much as possible. In the version of RESCHU we im-
plemented, the damage to a UAV inflicted by a threat was severe
and could permanently incapacitate the UAV. Participants were
provided ongoing feedback in the status panel and the map on
the amount of damage incurred by vehicles and on the number
of incapacitated vehicles.

3) Design and Procedure: Prior to the start of the exper-
iment, participants completed an interactive tutorial that ex-
plained all aspects of the simulation. During the tutorial, partic-
ipants learned the objective of the simulation, how to control the
UAVs (changing targets, manipulating waypoints), and how to
engage a target and complete the visual acquisition task in the
payload panel. Participants were also warned of the dangers of
threats and were instructed on how to avoid threats. The tutorial
lasted approximately 10 min. After completing the tutorial, the
experimenter went over all of the controls with the participant
to ensure that the participant understood the task. Participants
understood the danger of threat areas and that threat areas could
incapacitate a UAV.

After completing the training, participants were seated ap-
proximately 66 cm from the computer monitor and were cali-
brated on the eye tracker. Participants were again instructed to
engage as many targets as possible and prevent as much dam-
age as possible. Participants then began the simulation session,
which lasted 10 min. When the simulation session ended, par-
ticipants received feedback on how many vehicles they engaged
and total vehicle damage. Then, participants were recalibrated
and were run in a second 10-min session with identical pro-

cedures to the first session. The data from both sessions were
combined in the analyses to be presented.

4) Measures: The data from the supervisory control task
were segmented into PIT events. Keystroke and mouse data were
collected for each participant. Eye tracking data were collected
using an SMI RED eye tracker operating at 250 Hz. A fixation
was defined using the dispersion method based on a minimum
of 15 eye samples within 60 ms and within 50 pixels (approx-
imately 3◦ of the visual angle) of each other, calculated in Eu-
clidian distance. Three areas of interest were defined: UAVs,
threats, and targets. Other fixations on the map panel and fixa-
tions on the payload panel were not analyzed. The eye tracker
and the RESCHU simulation were synchronized, such that the
simulation sent the eye tracker an update of its state each time
its state was updated, i.e., every 500 ms.

We calibrated a participant on the eye tracker until each eye
had a visual angle of less than 1◦. After ten unsuccessful attempts
to calibrate a participant, the participant was not included in the
data analysis. Calibration took less than 5 min.

5) Differences in Experimental Methods: The design and
procedures of the experiments to be reported were identical to
those of the baseline task just described, with the following
exceptions:

Experiment 3. Engagement was complete when the partic-
ipant right clicked on a vehicle and selected the engagement
menu item. Unlike the other experiments, there was no need to
deliver the payload by performing a visual identification subtask
in the payload panel, and, therefore, no interruption of the map
panel task.

Experiment 4. A time constraint was imposed on engagement.
If the participant failed to initiate payload delivery within 12 s
after the UAV reached its target, the UAV was reassigned to a
new target without delivering its payload. As in the benchmark
condition, payload delivery was accomplished using the payload
panel.

Experiment 5. Participants were assigned randomly to either
the Cue condition or the control, No Cue condition. Methods in
the control condition were identical to the baseline condition. In
the Cue condition, a logistic regression model was used in real
time to predict whether the participant would fail to prevent a
vehicle from hitting a threat area and, if so, to alert the partici-
pant of the danger by highlighting the relevant threat. The model
reassessed the status of each PIT every 500 ms, when the sim-
ulation updated itself. The damage likelihood of each UAV on
a path intersect threat course was computed using the dynamic
operator overload model, and when the likelihood exceeded the
model’s threshold value, the relevant threat was highlighted by
turning blue (from yellow), and blinking to alert the user of the
impending threat.

B. Results

1) Model Development: Experiment 1: Among the 35 par-
ticipants in the experiment, there were a total of 1999 PIT events,
216 (10.8%) of which ended in damage to UAVs. Mean dura-
tion of PIT events was 14 916.2 ms (SD = 16.33). The other
main action performed by participants, payload delivery (visual
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TABLE II
LOGISTIC REGRESSION TABLE, EXPERIMENT 1

acquisition), had a mean duration of 4800 ms (SD = 400). See
Table I for additional information on the participants.

a) Developing a Logistic Regression Model: To create a lo-
gistic regression model of the PIT events, the outcomes of dam-
age and no damage were coded as a binary outcome variable
for each PIT event. The three predictor variables of interest
(WTAA, WQF, AT) were recorded for each PIT event. WTAA
and AT were recorded in milliseconds. WQF was an integer rep-
resenting the quantity of nonfocal fixations during a PIT event.
Equation (4) represents the resulting dynamic overload model
as a logistic regression equation predicting damage outcomes of
PIT events:

Predicted Logit of Damage = 2.17 + (.00007 ∗ WTAA)

+ (.11 ∗ WQF) − (.00027 ∗ AT) (4)

The output of a logistic regression model is a logit; its use
in prediction will be explained later. This model was computed
based on the final values for each PIT event. In the final experi-
ment, we will examine whether the model is useful for dynamic
prediction during PIT events.

The overall logistic regression model was significant, χ2(3) =
240.68, p < .0001. The log odds of damage was significantly
related to each of the three predictors (p < .0001). The results
of the logistic regression model analysis are summarized in Ta-
ble II. The signs of the β values, representing the coefficients
and the constant in the equation, indicate the direction of each
predictor’s relationship to a damage outcome; thus, all the pre-
dictors, other than AT, were positively related to damage. χ2

Wald is related to the strength of each predictor. WQF and AT
were the strongest predictors.

The model fit the data quite well. One measure of fit is the
C statistic, which assesses the proportion of all pairs of PIT
events with different observed outcomes which the model pre-
dicts correctly. The C value of the model was .96, which is
excellent as models with C values greater than .80 are consid-
ered strong [17]. Thus, for 96% of all relevant pairs of events,
the model correctly assigned a higher probability of damage to

Fig. 2. ROC curve for logistic regression model.

PIT events that resulted in damage than to events that did not
result in damage.

b) Receiver-Operating Characteristic Analysis: Receiver-
operating characteristic (ROC) analysis predicts how many dam-
age events from the data were actually predicted by the logistic
regression model [18]. Thus, each of the PIT events was classi-
fied using the model, and the results were then compared with
the actual outcome for that event. In order to classify model
outputs according to a binary outcome, such as damage versus
no damage, a threshold value must be determined, with model
outputs falling above that value classified as damage and those
falling below the threshold classified as no damage predictions.
An ROC analysis determines the optimal threshold value. Fig. 2
plots the proportion of true positive and false positive classifi-
cations for each threshold. The optimal threshold is the one that
maximizes true positive classifications and minimizes false pos-
itive classifications, and thus corresponds to the upper left-hand
point on the curve. The threshold for our model was determined
to be 0.26. To classify a PIT event instance, the logit value
output by the model equation is converted to a probability us-
ing the equation p = elogit /(1 + elogit) and then compared with
the threshold; probabilities greater than the threshold predict an
outcome of damage, while probabilities less than the threshold
predict no damage.

ROC analysis also provides metrics to evaluate the classifi-
cations provided by the model. The area under the ROC curve
(AUC) represents the probability that the model will rank a ran-
domly selected positive instance (i.e., damage event) higher than
a randomly selected negative instance (i.e., no damage event),
and is thus similar to C [18]. Like C, AUC was equal to .96.
Finally, ROC analysis provides an overall measure of fit, d′,
which was equal to 2.65 for the current model, indicative of a
highly precise discrimination, since a d′ value of 2.0 represents
nonrandom discrimination with a 95% probability [19]. The rate
of true positive classifications was high (87%), the rate of false
positive classifications was low (6%). The results of the ROC
analyses, as well as the C score, are displayed in the first row
of Table III.
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TABLE III
COMPARISON OF LOGISTIC REGRESSION MODELS USING WQF VERSUS

WTQ PREDICTORS

We chose to focus on a predictive model that concentrates
on eye fixations rather than an alternate predictive model which
more closely follows Cummings and Mitchell’s FO model, using
the variable WTQ in place of WQF. As can be seen in the second
row of Table III, the WTQ model displayed a good fit to the
data in terms of C and d′ scores. However, given the benefits
of examining eye movements described earlier, we explored
the model described in (4), which relied on the eye movement
predictors WQF and WTAA, in the experiments that follow.

c) Discussion: Multiple regression analytic methods, such as
logistic regression, assume that the data points are independent,
and this assumption is violated in the present model. Each par-
ticipant contributed on average 57.1 PIT events to the data. As
a practical matter, it would be difficult to gather data on 1999
PIT events from that same number of participants. It would be
possible in this case to use a mixed-model logistic regression
model, but because those models separate fixed and random ef-
fects, they can be very difficult to use for prediction because
random effects cannot be computed ahead of time for novel
participants [20], [21]. The primary concern with not having in-
dependent data is that inferences may be incorrect and may not
result in accurate generalizations to future datasets. We suspect
that the data we collected have exchangeable random variables
(future data will behave like past data, regardless of whether it is
independent [22]), and the model we construct will generalize
to future datasets. The strongest test of this model will occur
throughout the rest of this paper where we show that the model
does, in fact, generalize to other datasets and can even improve
operator performance in real time.

2) Model Validation: Experiments 2–4: The validity of the
dynamic overload model was assessed in three experiments:
an identical task to Experiment 1 (Experiment 2), an easier
task (Experiment 3), and a harder task (Experiment 4). In all
experiments, the model used was (4) with the same threshold
value as in Experiment 1. Other predictive systems create their
models based on an individual; while the model works well on
that person, it frequently does not generalize or work well with
others. Our approach focuses on building a model that captures
perception and cognition at a level that should generalize to
anyone and thus does not need a training dataset from each
individual.

The damage rate data in Table IV indicate that the manip-
ulations had the intended effects on performance. Relative to
the baseline experiment, comparable damage was incurred in
the replication, less damage was incurred in the easier task, and
more damage was incurred in the harder task. In contrast, pay-
load delivery was relatively unaffected by these manipulations.

TABLE IV
DAMAGE RATE AND PAYLOADS DELIVERED IN EXPERIMENTS

TABLE V
MODEL EVALUATION ACROSS EXPERIMENTS

While damage rates varied across Experiments 2 to 4, gen-
eralization of the dynamic overload model was very good in
all three experiments, as indicated in Table V. The results thus
support the robustness of the model.

These results also address one potential challenge to our
model: It might be possible that participants had different thresh-
olds for what they believed to be an acceptable amount of dam-
age, despite the instructions to try to reduce damage as much
as possible and engage as many vehicles as possible. Some par-
ticipants may have considered a certain amount of damage an
acceptable sacrifice in order to engage more vehicles. While
individual or systematic biases toward either damage avoidance
or engagement cannot be ruled out, the current results suggest
that such biases did not affect the generalization of our model.
Both when engagement was not performed at all in Experiment
3 and when engagement was given a higher priority in Experi-
ment 4, the dynamic overload model successfully discriminated
between events that did versus did not end in damage. Another
way to examine the question of different thresholds would be
to look at the relationship between the amount of damage and
the number of vehicle engagements: if participants were willing
to take damage in order to engage more vehicles, there should
be a positive correlation between number of engagements and
damage. However, across all the experiments, we found a mod-
erate negative relationship between the number of damage in-
stances and the number of payload vehicles engaged (r = –0.37,
p < 0.001), suggesting that the more payload engagements the
operator performed the fewer damage instances occurred. This
analysis strongly suggests that operators did not, in general,
have a strategy to take damage in order to perform more vehicle
engagements.
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3) Model Application: Experiment 5: The preceding experi-
ments do not directly demonstrate the dynamic overload model’s
predictive power, since the model was generated and evaluated
on data analyzed after the experiments were conducted. In an
effort to support the claim that the model is predictive, we ap-
plied the model in real time as a means to alert the operator to
predicted damage. The cue appeared only in those PIT events
where the model predicted that the operator would fail to pre-
vent damage and only once the model first made that prediction.
The cue then continued to appear until the end of the PIT event.
If using the model to provide cues to the operator results in a
decreased rate of vehicle damage, it will provide evidence of
the real-time predictiveness of the model.

The model triggered the cue in 61% of the PIT events in the
Cue condition. The cue was triggered after an average of 23%
of AT (SD = 15%) had elapsed.

As is evident in Table IV, the dynamic cues substantially
decreased the rate of damage. Whereas 7.5% of PIT events
ended in damage in the No Cue condition, only 3.7% of PIT
events ended in damage in the Cue condition. Curiously, the No
Cue condition witnessed less damage relative to Experiments
1 and 2, which had comparable procedures. We attribute this
anomaly to random variation. In any case, the comparison of the
two conditions in Experiment 5 showed that alerting the user to
predicted damage via cues reduced the rate of damage by more
than half. In addition, in all PIT events ending in damage in the
Cue condition, the cue was triggered by the model. That is, there
were no cases of damage on PIT events where the cue failed to
appear, i.e., no false negative errors. Thus, the model was a
strong dynamic predictor of damage and the model-based cue
was effective in preventing damage, providing further support
for the dynamic operator overload model.

These observations suggest that the damage instances that oc-
curred despite the cue’s appearance had a different cause from
damage instances predicted by the model. Indeed, the dynamic
operator overload model was a poor predictor of damage in the
Cue condition. We believe that the remaining instances of dam-
age, not prevented by the cue, were due to concurrent urgent PIT
events, i.e., nonfocal PIT events that triggered cues on the basis
of the damage prediction model (i.e., urgent) that overlapped in
time with the focal event (i.e., concurrent). In the Cue condi-
tion, there was a mean of 0.84 (SD = 1.09) concurrent urgent
nonfocal PIT events. For urgent PIT focal events not ending in
damage, the mean rate of concurrent urgent PIT events was sim-
ilar to this baseline (M = 0.96, SD = 1.13). However, for urgent
PIT focal events ending in damage, there were about twice as
many concurrent urgent PIT events as the baseline (M = 1.98,
SD = 1.33). Thus, damage incurred despite the cue was associ-
ated with competition between multiple concurrent urgent PIT
events. In many such situations, damage could be avoided only
if the focal event was the one first selected by the operator to
handle. If not given priority by the operator, such urgent PIT
events often ended in damage. Thus, damage that occurred de-
spite the model-generated cue was likely due to task overload
that exceeded the operator’s capacity.

We should mention that the number of concurrent PIT events
in general (i.e., whether urgent or not urgent) was found to not be

TABLE VI
FAN-OUT VALUES FOR ALL EXPERIMENTS

a good predictor of damage within a logistic regression model in
the control, No Cue, condition or in the previous experiments.
Consequently, this variable was not included in the dynamic
overload model.

We believe that the cue served primarily to encourage atten-
tion to the threat, rather than to support cognition of the threat.
The RESCHU user interface clearly represents the UAVs’ tra-
jectories toward their respective targets graphically by lines.
Thus, an upcoming threat could be recognized on a perceptual
basis by the visible trajectory’s traversal of a threat area. The cue
likely drew the users’ attention to threats they had not noticed
or had forgotten.

In sum, the results of Experiment 5 provided further support
for the dynamic operator overload model. The model served
as a basis for real-time cues to alert the operator to impending
vehicle damage. The cues reduced the damage rate by about
half and were never presented unnecessarily in events where
there was no damage. Cases where damage occurred despite
the cue were characterized by simultaneous cues for more than
one threat, suggesting that the overloading was too great for
damage from all co-occurring threats to be avoided. Thus, the
dynamic operator overload model appears to be a good predictor
of supervisor overload.

IV. FAN-OUT AND PERFORMANCE PREDICTION

FO values for each experiment are displayed in Table VI,
computed using (3), which we will refer to as “AT fan-out”, both
based on all PIT events and based only on PIT events where no
damage occurred. Note that since FO here is computed only
based on PIT events, not on payload events, it does not provide
a complete assessment of the demands of the respective tasks.
The FO values displayed in Table VI suggest that operators
in our experiments were often required to supervise somewhat
more vehicles (i.e., five vehicles) than recommended by the FO
model. The main exception was the easier task in Experiment
3. In that experiment, the absence of a competing task, payload
delivery, reduced the amount of time devoted to competing tasks
(i.e., WTQ) during PIT events.

We wished to determine whether AT FO based on AT, as in
(3), is similar to FO based on NT, as in Cummings and Mitchell,
(2). We computed NT FO as follows:

NT fan-out = (NT/PIT.duration) + 1 (5)
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where NT is time outside of PIT and of payload delivery events,
and PIT.duration is the duration of PIT events. PIT.duration
served as a substitute for the expression in the denominator of
(2), involving WTAA, WTQ, and IT, since the entire PIT event
consists of some combination of these durations. During a PIT
event, there is always an object that needs attention, namely the
focal object. Thus, assuming operator engagement, at every mo-
ment in the event, the participant is either working on/attending
to the focal object or not working on it. In the former case, the
time represents IT, in the latter case it represents WT. WT is
either WTQ or WTAA depending on whether the participant is
attending to nonfocal objects or not, respectively. Thus, the en-
tire PIT event represents some combination of the denominator
variables in (2). Furthermore, no time outside of the PIT event
contributes to those variables, with the exception of time spent
on the focal vehicle’s payload delivery, but that interval is not
included in NT.

As Table VI shows, FO values computed based on NT were
similar to those based on AT. The principal exception was in Ex-
periment 3, where NT FO was lower than AT FO. The similarity
between the two measures of FO supports our interpretation of
our logistic regression model as a dynamic version of the Cum-
mings and Mitchell FO model.

A comparison among the first four experiments demonstrates
that relative task difficulty was reflected similarly in FO and
damage rate. However, the intervention of providing cues in
Experiment 5 did not improve FO, even though it radically re-
duced the damage rate, highlighting an important difference
between FO and performance prediction. FO is concerned with
having enough time to perform a task, whereas prediction is
primarily concerned with what users do with the AT. The cue
does not change the amount of time required to perform sub-
tasks but does alert users to direct their efforts to a particular
subtask requiring immediate attention. Time intervals where the
operator lacked attentional awareness of one problem were not
moments of idleness, as the current task is a highly dynamic,
time-pressured task in which the operator is continually active.
In moments in which the operator has lost awareness of one
problem, he/she is generally engaged in another problem. As a
result, lost awareness may result in poorer performance without
increasing the overall time required for the task.

Another important difference between damage prediction and
FO is suggested by a predictive model based on a single variable,
i.e., the time remaining to work on the focal threat problem
after consuming time on WTAA delay and on working on other,
nonfocal objects. This duration represents potential IT

potential-IT = AT − (WTAA + WTQ1) (6)

where WTQ1 includes both time spent acting on nonfocal ob-
jects and time spent fixating such objects and where both of those
durations are calculated so as not to overlap with the WTAA in-
terval, i.e., the initial duration of the PIT before the focal threat
is first fixated. As Table VII shows, the single-variable model
displays comparable quality to the dynamic operator overload
model, defined by (4). Furthermore, the single-variable model
adheres more closely to the principle underlying the FO equa-
tion, as it is based solely on an estimate of the time remaining

TABLE VII
COMPARISON OF THE DYNAMIC OPERATOR OVERLOAD MODEL AND A MODEL

BASED ON POTENTIAL-IT, EXPERIMENT 1 DATA

to work on the focal problem after deducting all WTs from the
AT.

However, this model can be shown to be much less useful
than the original model in terms of the timeliness of the pre-
diction. In the Cue experiment (Experiment 5), the dynamic
operator overload model produced a warning signal after only
23% of the AT had elapsed, on average. In contrast, solving
the single-variable model’s logistic regression equation for the
value required to exceed the model’s threshold shows that the
model would not produce a warning signal until 90% of the AT
had elapsed. That is too late to be useful to the operator. FOs
based on (3) under procedures similar to the Experiment 5 con-
trol condition (i.e., Experiments 1 and 2) are generally between
4 and 5 (see Table VI). Thus, approximately 20–25% of AT is
required to take care of each vehicle. Warnings provided by the
potential-IT model, when only 10% of AT remains, are clearly
insufficient, whereas the warnings provided by the dynamic op-
erator overload model are more than adequate, allowing 77% of
the AT to take care of the vehicle needing attention.

These observations highlight one key difference between FO
and predictive models. FO models analyze performance on a
task globally and, therefore, are not aimed at within-task pre-
diction, beyond a global prediction of how many vehicles an
operator will generally be able to supervise in a given task.
The dynamic operator overload model, in contrast, is useful for
prediction of performance during a task session.

However, the comparison of the two logistic regression mod-
els demonstrates that even logistic regression does not always
provide useful predictions of real-time performance. Logistic
regression makes no distinction among the relative temporal
position of data points within an interval (e.g., a PIT event) and,
therefore, requires theory-based selection of possible predictors
by the researcher in order to contribute to timely prediction. The
variable potential-IT diminishes progressively from the start to
the end of the PIT event. In contrast, in the dynamic operator
overload model, the value of one predictor, AT, is known at the
start of the PIT event. A second predictor, WTAA is an interval
that begins at the start of the event and that usually ends well
before the event is finished. Only the third predictor, WQF (or
WTQ), grows progressively throughout the course of the event.
As a result, the dynamic operator overload model provides a
better basis for an alert system than the potential-IT (6) model.
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In addition, a predictor to be useful must be theoretically
meaningful, as illustrated by the potential-IT model, which is
based only on time remaining to perform a task. It is trivial
that a participant who never performs an action will run out of
sufficient time to do so shortly before the deadline. To paraphrase
a well-known saying, it is always darkest before nightfall. It is
more useful from a theoretical and practical perspective to know
that the operator’s failure to notice a problem and the operator’s
preoccupation with other objects and activities predict the failure
to correct the problem. More generally, high scores on typical
criteria to assess logistic regression models (C, d′, etc.) are not
sufficient to guarantee that a model is theoretically or practically
useful.

V. CONCLUSION

The FO models of Cummings and Mitchell, and Crandall et al.
were designed to estimate the number of UAVs a single opera-
tor can supervise. Their estimates are based on time intervals,
including the length of time a vehicle may be ignored before
its performance degrades below a specified threshold (NT), the
time required to bring a vehicle’s performance back up above
the threshold (IT), and delays between those two intervals due
to loss of attentional awareness (WTAA) and due to time spent
on higher-priority tasks (WTQ).

We explored the relationship between system-focused FO, on
which Cummings and Crandall focused, and dynamic opera-
tor overload, which varies over the course of operator–system
interaction. Even when an operator is required to supervise no
more vehicles than dictated by the system-focused FO model,
there may be moments when dynamic task demands converge
to overload the operator, resulting in errors. It is the goal of a
dynamic operator overload model to predict such situations of
transitory overload.

In this paper, the dynamic operator overload model was de-
veloped to predict the quality of ongoing performance of novice
operators engaged in a simulation task in which they supervised
five UAVs, attempting to keep them from incurring damage by
traversing threat areas while directing the vehicles to deliver
payloads on assigned targets. We developed logistic regression
models to predict vehicle damage based on ongoing operator
behaviors and attention as assessed by operator eye movements.
Our models took the variables that figure in system-focused FO
models as their starting point.

The FO variables WTAA and WTQ, together with the vari-
able AT (substituted for NT for task-specific reasons), yielded a
model that was highly predictive of damage occurrences in PIT
events.

More predictive still was a model that substituted number
of fixations on nonfocal objects (WFQ) in place of time spent
acting on nonfocal objects (WTQ). The superiority of the model
with the WFQ variable over the model using WTQ may be due
to the fact that fixations are a more comprehensive measure than
manual actions and are more sensitive to individual differences
in visual and/or core processing speed. Fixations on objects
occur during manual actions on those objects (i.e., as in WTQ)
as well as during cognitive activity in the absence of overt action,

such as scanning and decision making. The WFQ-based model
was chosen for further examination in this paper.

The model’s parameters were generated from the data in Ex-
periment 1. The model was then replicated in Experiment 2,
generalized to an easier task and a harder task in Experiments
3 and 4, respectively, demonstrating the model’s robustness.
The model was then applied in Experiment 5, where the model
initiated cues that alerted the user to impending damage.

This paper also pointed to the importance of attention in pre-
dicting performance. Two of the three variables in the dynamic
operator overload model, WTAA and WFQ, were based on eye
fixation data. WTAA, the time it took for the operator to first
fixate on the relevant threat of a path-intersects threat event,
is clearly related to attention. WFQ, the number of fixations on
nonfocal objects may reflect attention in part. The success of the
alert cue in Experiment 5 in greatly reducing damage rate like-
wise suggests the importance of attention to task performance.

The success of the model-based cues in Experiment 5 also
provided evidence of the ability of the dynamic operator over-
load model to predict damage in real time. The cues reduced the
rate of damage by about half. What is more, no damage occurred
in the absence of a cue. The success of the cues also points to the
potential practical application of the dynamic operator overload
model.

This paper also sheds light on considerations involved in de-
veloping a model that provides timely feedback, as far in advance
as possible. We demonstrated that a model that is a highly dis-
criminating classifier may not be able to make a decision until
late in an event, at which point a warning likely comes too late
to be useful. In contrast, our model, when used as the basis for
user cues, was able to alert the user of a threat after only 23% of
the event had passed. We argued that the timeliness of the cue
was due to the model’s reliance on factors most of which were
available at, or soon after, the start of the event.

The main conclusion of this paper is that a system-focused
FO model may be adapted to produce a dynamic operator over-
load model. Both models rely on the operator’s allocation of AT
to competing subtasks. Whereas system-focused FO is a global
assessment of a task, the dynamic operator overload model al-
lows for variations in both AT and the number of competing
time demands during the course of a task, the focus of dynamic
operator overload. Some of this variation is imposed by the
environment, outside of the operator’s control, whereas other
variations in time allocation are due to the operator’s attentional
awareness and the operator’s decision and planning skills. Both
types of variation contributed to the dynamic operator overload
model presented here.
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